

LEGO Power Functions RC

Version 1.10

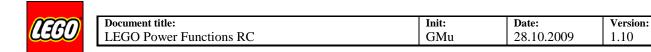
Document title:	Init:	Date:	Version:
LEGO Power Functions RC	GMu	28.10.2009	1.10

Introduction

The purpose of this document is to describe the RC protocol supported by the LEGO Power Functions RC Receiver.

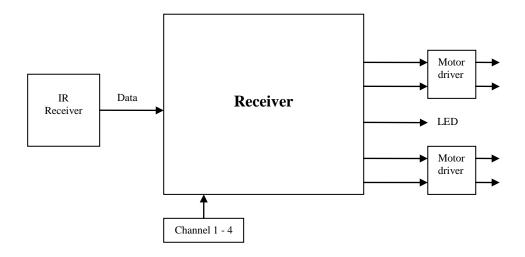
Attention!

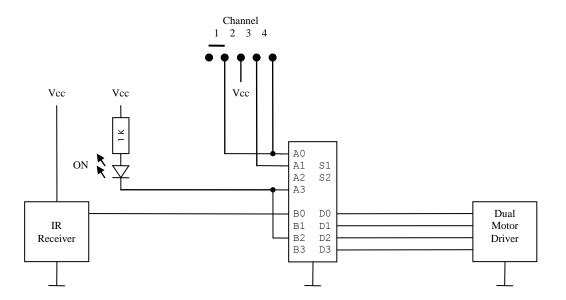
Please feel free to use any information from this document for personal, non-commercial use only, provided you keep intact copyright, trademark and other proprietary rights of the The LEGO Group – have fun.


The LEGO Group 09/2009

Document title:	Init:	Date:	Version:
LEGO Power Functions RC	GMu	28.10.2009	1.10

Table of content


Introduction	2
Table of content	3
LEGO Power Functions RC	4
LEGO Power Functions RC Receiver	
Application Schematics	4
Description	5
LEGO Power Functions RC Protocol	6
Extended mode	
Combo direct mode	8
Single pin continuous mode	9
Single pin timeout mode	10
Single output mode	11
Combo PWM mode	12
LEGO Power Functions RC Encoding	
Transmitting Messages	14
LEGO Power Functions RC Decoding	15
Receiving Messages	


LEGO Power Functions RC

LEGO Power Functions RC Receiver

The receiver has input for IR data and channel switch and output for two LPF plugs and one LED.

Application Schematics

Document title:	Init:	Date:	Version:
LEGO Power Functions RC	GMu	28.10.2009	1.10

Description

This receiver firmware is capable of executing all commands in the "LPF RC Protocol" – acting in a variety of RC modes. Each mode implements a certain type of RC functionality.

When applying supply voltage the LED will give a short blink and then light up - the receiver is now ready. If a legal valid command of the right channel is received the LED will shortly turn off and indicate that the command is executed. The effect you will see is the LED blinking when messages are received.

The outputs of the RC Receiver are generic Power Functions outputs – in the following we will use motors as examples to describe the functionality of the control.

Depending on command the four output port pins will turn into two motor controls or individually controlled outputs. The motor outputs will either be forward, float, brake, backward – ON/OFF or PWM controlled. Some commands are timed out after 1.2 second when not receiving IR others are not. Default behavior is floating outputs.

The receiver does not power down and can only be turned off by removing its supply voltage.

Document title:	Init:	Date:	Version:
LEGO Power Functions RC	GMu	28.10.2009	1.10

LEGO Power Functions RC Protocol

The payload is: 1 toggle bit, 1 escape bit, 2 bits for channel switch, 1 bit for address, 3 bits for mode and 4 bits for various data depending on mode.

The address bit is intended for enabling an extra set of 4 channels for future use. The current PF RC Receiver expects the address bit to be 0.

A message consists of: A special length synchronisation start bit, payload and "Longitudinal Redundancy Check" to validate the entire message before executing the command and at last a stop bit to terminate the message.

	Nibble 1					Nibble 2				Nibble 3							
start	T	E	С	C	а	M	M	M	D	D	D	D	L	\boldsymbol{L}	\boldsymbol{L}	\boldsymbol{L}	stop
Start	Toggle	Escape	Cha	nnel	Address		Mode		Data			LR	.C		Stop		

Start	start	Specia	al synchronisation start bit (see description under "Encoding")
Toggle	T	0-1	Toggling for every new command
Escape	E	0 1	Use "Mode" to select the modes listed below Combo PWM mode
Channel	CC	0-3	Channel switch 1 - 4
Address	a	0 1	Default address space (from power up) Extra address space
Mode	MMM	000 001 010 011 1xx	Extended mode Combo direct mode Single pin continuos mode Single pin timeout mode Single output mode
Data	DDDD	0-15	Data: different meaning depending on "Mode"
LRC	LLLL	XXXX	= 0xF xor Nibble 1 xor Nibble 2 xor Nibble 3
Stop	stop	Same	as Start

Document title:	Init:	Date:	Version:
LEGO Power Functions RC	GMu	28.10.2009	1.10

Extended mode

This mode is able to control:

Brake, increment and decrement PWM in 7 steps on Output A and toggle Forward/Float on Output B. Toggle bit is verified on receiver. <u>No timeout</u> for lost IR.

From power up the address bit is always expected to be 0 (default address space). If the "Toggle Address bit" command is received (with a = 0) the extra address space is used and commands are from now expected to have the address bit set to 1. A new "Toggle Address bit" command (now with a = 1) will toggle back to default address space.

The "Align toggle bit" command has no action and is used to make sure the next command send is in sync.

				Nibble 2				Nibble 3										
	start	T	0	C	C	a	0	0	0	F	F	F	F	\boldsymbol{L}	\boldsymbol{L}	\boldsymbol{L}	\boldsymbol{L}	stop
ſ	Start	Toggle	Escape	Cha	nnel	Address		Mode		Data					Stop			

_			
Function	FFFF	0000	Brake output A (timeout)
		0001	Increment speed on output A
		0010	Decrement speed on output A
		0011	Not used
		0100	Toggle forward/float on output B
		0101	Not used
		0110	Toggle Address bit
		0111	Align toggle bit (get in sync)
		1000	Reserved

Document title:	Init:	Date:	Version:
LEGO Power Functions RC	GMu	28.10.2009	1.10

Combo direct mode

This mode is able to control: Two outputs float/forward/backward/brake.

This is a <u>combo</u> command controlling the state of both output A and B at the same time.

Toggle bit is not verified on receiver.

This mode has timeout for lost IR.

	I	Nibble		Nibble 2				Nibble 3									
start	T	0	C	C	a	0	0	1	В	В	\boldsymbol{A}	\boldsymbol{A}	L	\boldsymbol{L}	L	\boldsymbol{L}	stop
Start	Toggle	Escape	Chai	nnel	Address		Mode		Data				LRC				Stop

B output	BB	00xx Float output B
		01xx Forward on output B
		10xx Backward on output B
		11xx Brake ten float output B
A output	AA	xx00 Float output A
A output	AA	•
		xx01 Forward on output A
		xx10 Backward on output A
		xx11 Brake then float output A

Document title:	Init:	Date:	Version:
LEGO Power Functions RC	GMu	28.10.2009	1.10

Single pin continuous mode

This mode is able to control: Clear/set/toggle of an individual pin C1 or C2 on output A or B.

Toggle bit is verified on receiver.

This mode has <u>no timeout</u> for lost IR.

				Nib	ble 2			Nib	ble 3								
start	T	0	C	C	a	0	1	0	0	P	F	F	\boldsymbol{L}	L	L	\boldsymbol{L}	stop
Start	Toggle	Escape	Cha	nnel	Address		Mode			Data				LR	.C		Stop

Output	0	0 1	Output A Output B
Pin	P	0 1	Pin C1 Pin C2
Function	FF	00 01 10 11	No change Clear Set Toggle

Document title:	Init:	Date:	Version:
LEGO Power Functions RC	GMu	28.10.2009	1.10

Single pin timeout mode

This mode is able to control: Clear/set/toggle of an individual pin C1 or C2 on output A or B.

Toggle bit is verified on receiver.

This mode has <u>timeout</u> for lost IR.

		Nibble 1				Nibble 2				1	Nibl	ble 3		1				
Ī	start	T	0	С	C	а	0	1	1	0	P	F	F	\boldsymbol{L}	\boldsymbol{L}	L	\boldsymbol{L}	stop
ſ	Start	Toggle	Escape	Cha	nnel	Address		Mode		Data		Data LRC						Stop

Output	0	0 1	Output A Output B
Pin	P	0 1	Pin C1 Pin C2
Function	FF	00 01 10 11	No change (sent to prevent timeout) Clear Set Toggle

Document title:	Init:	Date:	Version:
LEGO Power Functions RC	GMu	28.10.2009	1.10

Single output mode

This mode is able to control: One output at a time with PWM or clear/set/toggle control pins.

Toggle bit is verified on receiver if increment/decrement/toggle command is received.

This mode has no timeout for lost IR on all commands except "full forward" and "full backward".

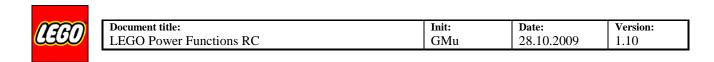
				Nibl	ble 2			Nibl	ble 3								
start	T	0	C	C	a	1	M	0	D	D	D	D	\boldsymbol{L}	\boldsymbol{L}	L	\boldsymbol{L}	stop
Start	Toggle	Escape	Cha	nnel	Address		Mode		Data			LR	.C		Stop		

Mode	M	0 1	PWM Clear/Set/Toggle pin
Output	0	0 1	Output A Output B
Mode = PWI	М		
Data	DDDD	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1101 1110 1111	Float PWM forward step 1 PWM forward step 2 PWM forward step 3 PWM forward step 4 PWM forward step 5 PWM forward step 6 PWM forward step 7 Brake PWM backward step 7 PWM backward step 6 PWM backward step 5 PWM backward step 5 PWM backward step 5 PWM backward step 4 PWM backward step 3 PWM backward step 2 PWM backward step 1
Mode = Clea	r/Set/Toggle		
Data	DDDD	0000 0001 0010 0011 0100 0101 0110 0111 1000	Clear C1 + Clear C2 Set C1 + Clear C2 Clear C1 + Set C2 Set C1 + Set C2 Increment PWM Decrement PWM Full forward (timeout) Full backward (timeout) Toggle full forward/backward (default forward)

Document title:	Init:	Date:	Version:
LEGO Power Functions RC	GMu	28.10.2009	1.10

Combo PWM mode

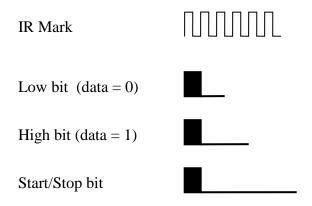
This mode is able to control: Two outputs with PWM in 7 steps forward and backward.


This is a <u>combo</u> command controlling the state of both output A and B at the same time.

Toggle bit is not verified on receiver.

This mode has timeout for lost IR.

			Nibble	e 1		Nibble 2				Nibble 3								
	start	а	1	C	C	В	В	В	В	\boldsymbol{A}	\boldsymbol{A}	\boldsymbol{A}	\boldsymbol{A}	\boldsymbol{L}	\boldsymbol{L}	\boldsymbol{L}	\boldsymbol{L}	stop
ſ	Start	Address	Escape	Chan	nel		B B B B			Output A					Stop			


Output B	BBBB 0000	Float
•	0001	PWM forward step 1
	0010	PWM forward step 2
	0011	PWM forward step 3
	0100	PWM forward step 4
	0101	PWM forward step 5
	0110	PWM forward step 6
	0111	PWM forward step 7
	1000	Brake
	1001	PWM backward step 7
	1010	PWM backward step 6
	1011	PWM backward step 5
	1100	PWM backward step 4
	1101	PWM backward step 3
	1110	PWM backward step 2
	1111	PWM backward step 1
Output A	AAAA 0000	Float
Output A	AAAA 0000 0001	Float PWM forward step 1
Output A	0001	PWM forward step 1
Output A	0001 0010	PWM forward step 1 PWM forward step 2
Output A	0001	PWM forward step 1 PWM forward step 2 PWM forward step 3
Output A	0001 0010 0011	PWM forward step 1 PWM forward step 2
Output A	0001 0010 0011 0100	PWM forward step 1 PWM forward step 2 PWM forward step 3 PWM forward step 4
Output A	0001 0010 0011 0100 0101	PWM forward step 1 PWM forward step 2 PWM forward step 3 PWM forward step 4 PWM forward step 5
Output A	0001 0010 0011 0100 0101 0110	PWM forward step 1 PWM forward step 2 PWM forward step 3 PWM forward step 4 PWM forward step 5 PWM forward step 6
Output A	0001 0010 0011 0100 0101 0110 0111	PWM forward step 1 PWM forward step 2 PWM forward step 3 PWM forward step 4 PWM forward step 5 PWM forward step 6 PWM forward step 7
Output A	0001 0010 0011 0100 0101 0110 0111 1000	PWM forward step 1 PWM forward step 2 PWM forward step 3 PWM forward step 4 PWM forward step 5 PWM forward step 6 PWM forward step 7 Brake
Output A	0001 0010 0011 0100 0101 0110 0111 1000 1001 1010	PWM forward step 1 PWM forward step 2 PWM forward step 3 PWM forward step 4 PWM forward step 5 PWM forward step 6 PWM forward step 7 Brake PWM backward step 7
Output A	0001 0010 0011 0100 0101 0110 0111 1000 1001 1011 1100	PWM forward step 1 PWM forward step 2 PWM forward step 3 PWM forward step 4 PWM forward step 5 PWM forward step 6 PWM forward step 7 Brake PWM backward step 7 PWM backward step 6
Output A	0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101	PWM forward step 1 PWM forward step 2 PWM forward step 3 PWM forward step 4 PWM forward step 5 PWM forward step 6 PWM forward step 7 Brake PWM backward step 7 PWM backward step 6 PWM backward step 5 PWM backward step 5 PWM backward step 5 PWM backward step 4 PWM backward step 3
Output A	0001 0010 0011 0100 0101 0111 1000 1001 1010 1011 1100 1101 1110	PWM forward step 1 PWM forward step 2 PWM forward step 3 PWM forward step 4 PWM forward step 5 PWM forward step 6 PWM forward step 7 Brake PWM backward step 7 PWM backward step 6 PWM backward step 5 PWM backward step 5 PWM backward step 5 PWM backward step 3 PWM backward step 2
Output A	0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101	PWM forward step 1 PWM forward step 2 PWM forward step 3 PWM forward step 4 PWM forward step 5 PWM forward step 6 PWM forward step 7 Brake PWM backward step 7 PWM backward step 6 PWM backward step 5 PWM backward step 5 PWM backward step 5 PWM backward step 4 PWM backward step 3

LEGO Power Functions RC Encoding

To ensure correct detection of IR messages six 38 kHz cycles are transmitted as mark. Low bit consists of 6 cycles of IR and 10 "cycles" of pause, high bit of 6 cycles IR and 21 "cycles" of pause and start bit of 6 cycles IR and 39 "cycles" of pause.

Graphically drawn:

The high pulse illustrates six 38 kHz cycles.

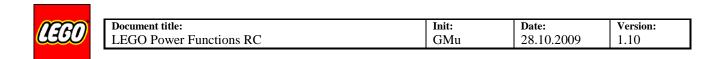
Low bit length $= 16 \times 1/38K = 421 \text{ us}$ High bit length $= 27 \times 1/38K = 711 \text{ us}$ Start bit length $= 45 \times 1/38K = 1184 \text{ us}$ Stop bit length $= 45 \times 1/38K = 1184 \text{ us}$

This example shows start bit, 6 bits and stop bit (not really the actual protocol).

Document title:	Init:	Date:	Version:
LEGO Power Functions RC	GMu	28.10.2009	1.10

Transmitting Messages

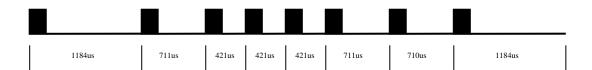
When a button is pressed or released on the transmitter the message is sent. Five exactly matching messages (if no other buttons are pressed or released) are sent accordingly in time intervals depending on the channel selected. This ensures that other transmitters are not interfering with all the messages.


When a button is held down and the protocol needs update to prevent timeout the message is send continuously with a time interval as between message 4 and 5. First after all buttons are released and this is transmitted the transmitter will shut down.

If t_m is the maximum message length (16ms) and Ch is the channel number, then

The delay before transmitting the first message is: $(4 - Ch)*t_m$

The time from start to start for the next 2 messages is: $5*t_m$


The time from start to start for the following messages is: $(6 + 2*Ch)*t_m$

LEGO Power Functions RC Decoding

Decoding of message bits is done by measuring time from start of IR detection to next start of IR detection. Using only one, the active edge, stabilize the measured time nearly without influence of the automatic gain control in the IR receiver.

The example from above:

When the stop bits pause is reached the message is processed.

Receiving Messages

The receiving firmware looks for a start bit and when this is detected it samples 16 data bits, calculates and compares the LRC. If any of the sampled bits are too long the sampling is terminated immediately and a new start bit is searched for.

When a bit time is sampled (measured) its time is hold against some limits.

Low bit range 316 - 526 us High bit range 526 - 947 us Start/stop bit range 947 - 1579 us

Depending on the bit time a low or high bit is rotated into the receive buffer.